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Abstract--On a plane of given orientation, the direction of resolved shear stress (r) is controlled by the 
orientation of the principal stress axes and by the ratio of principal stress differences. A simple stereographic 
construction is presented for the determination of the direction of r. 

INTRODUCTION 

IT IS frequently necessary to calculate the direction of 
resolved shear stress acting on a plane obliquely inclined 
to the principal stress axes, especially in work relating to 
petrofabrics, rock mechanics and fault slip analysis. A 
simple stereographic construction is presented below 
based on a geometrical property of the stress quadric. It 
is less involved than the Mohr circle construction of 
Zizicas (1955) and the geometrical construction given by 
Johnson & Mellor (1973). Unlike the methods suggested 
by Goodman (1963) and Jaeger & Cook (1979) the 
proposed construction involves the minimum of calcula- 
tion and yields a solution directly in stereographic pro- 
jection. 

to R. As a result, any line parallel to the tangent plane 
potentially belongs to a set of conjugate radii to which R 
belongs. Such a line parallel to the tangent plane is the 
line O and hence the plane containing O and R can be 
considered to be a diametral plane containing two out of 
a set of three conjugate radii for the ellipsoid. We note 
that O and R are mutually perpendicular and hence that 
O and R must be the principal axes of the ellipse on the 
section plane of the ellipsoid which is parallel to O and 
R. This plane containing O and R is perpendicular to the 
plane containing R and N and therefore the statement 
above is shown to be valid. 

THE STRESS QUADRIC OF CAUCHY 

A USEFUL PROPERTY OF THE ELLIPSOID 
For a deviatoric state of stress, the magnitude of the 

normal stress component is influenced by the orientation 

At any point on the surface of  an ellipsoid, the plane 
containing the radius R and normal to the surface is 
perpendicular to the plane on which R is a principal axis 
o f  the sectional ellipse. 

To verify this theorem we refer to the concept of 
conjugate radii of an ellipsoid and their well-known 
properties. Conjugate radii are parallel to three 
diameters of an ellipsoid, such that the plane through 
any two of them (a diametral plane) bisects all chords 
parallel to the third (Macaulay 1930, pp. 85-89). The 
following two rules apply to conjugate radii. Firstly, a 
pair of conjugate radii are only perpendicular when they 
coincide with the principal axes of the elliptical section 
on the diametral plane defined by those two radii. 
Secondly, the tangent planes of the ellipsoid at the 
extremities of a diameter are parallel to the diametral 
plane which is conjugate to that diameter. 

Figure 1 shows a radius R and tangent plane at point P 
on an ellipsoid's surface. Plane RN, the plane containing 
R and the normal to the tangent plane N, has O as its 
normal. As stated above the tangent plane is conjugate 

R 

plane 
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Fig. 1. At  any point P on the ellipsoid's surface, the plane containing 
the radius R and the normal to the surface N is perpendicular to the 
section plane which has R as a principal axis of the sectional ellipse. See 

text for proof of this statement. 
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of the plane on which the stress acts. This is conveniently 
illustrated by the geometry of the quadric surface repre- 
senting the equation: 

o l x  2 + crzy 2 + or3 z2 = + 1 

(Durelli et al. 1958, p. 68); when o 1 > cr z > o3 > 0, the 
surface is an ellipsoid. We are discussing shear stress 
which is not affected by the absolute magnitude of the 
principal stresses, only by principal stress differences. 
Consequently, for present purposes, stress states 
involving negative principal stresses can also be rep- 
resented by an ellipsoid after the addition of an appro- 
priate hydrostatic component (a constant added to each 
principal stress value). For any plane with a normal (n) 
of given orientation, the radius R of the ellipsoid parallel 
to that normal (n) is inversely proportional to the square 
root of the Value of the normal stress (a) acting on the 
plane (Fig. 2). The normal to the ellipsoid, N, drawn 
from the point where R intersects its surface, points in 
the direction of the resultant stress (s) acting on the 
plane. This ellipsoid should not be confused with the 
stress ellipsoid of Lam6 which has distinct properties 
(Durelli et al. 1958, p. 65). 

To find the direction of shear stress (r) acting on a 
plane we can now make use of the ellipsoid property 
demonstrated in the previous section. Namely, it has 
been shown that the plane containing R / I n  and N / / s  is 
perpendicular to the section plane having R / / n  as the 
major or minor axis of the ellipse (Fig. 3). We also know 
that the shear stress direction labelled r is given by the 
intersection of the plane (at) on which the resultant 
stress acts (Fig. 3). r is also perpendicular to the elliptical 
section which has R / / n  as a principal axis. This section 
plane can be found stereographically by a modification 
of the Biot-Fresnel construction (Bloss 1961, p. 161). 

FINDING THE ELLIPTICAL SECTION PLANE 
WHICH H A S  R/In AS A P R I N C I P A L  AXIS 

We start by finding the planes of circular section 
through the Cauchy ellipsoid. The two circular sections 
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Fig. 2. The stress quadric of Cauchy. 
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Fig. 3. The shear stress direction r in the plane Or is given by the 
intersection of this plane with the plane RN. R the radius of the Cauchy 
ellipsoid, is also parallello the normal n of the plane Or. N. the normal 
to the ellipsoid, is parallel to the direction of resultant stress (s) acting 

on plane Or. 

of an ellipsoid with principal radii a > b >c  intersect 
along the b axis and are inclined to the c axis at an angle 
V, where 

1 1 

cot 2 V - ~  -- a7 
1 1 

(see for example, Flinn 1962). The Cauchy ellipsoid has 
its a axis parallel to c% (a = l/V~3), its b axis parallel to 
o2 (b = l'V/-~2) and c axis parallel to al (c = l /Va0  and 
hence has circular sections which are inclined to the a~ 
axis at an angle of V, where 

cot 2 V - or2 - 03. (1) 
G 1 - -  O', 

The quantity (02 - o3)/(ol - or2) has been referred to as 
the stress ratio, R (Lisle 1980) and. it is implicit in Bott's 
(1959) equation that this ratio controls the directions of 
shear stress on a given plane. 

The stress diagram in Fig. 4, shows lines representing 
the equation V = cot -2 (stress ratio, R). This diagram 
can be used to find the Vangle for any given stress state. 

The Biot-Fresnel construction (Bloss 1961, p. 161) 
allows the principal directions of an elliptical section to 
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Fig. 4. The stress diagram (Lisle 1980) allows the angle V for the 
Cauchy ellipsoid to be found for any stress state. Stresses in any units 
may be plotted providing same SCaling is used on both axes of the 

diagram. 
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Fig. 5. The stereographic construction of the shear stress direction r 
on a plane with normal Rl/n. The planes CS are the two circular 

sections of the Cauchy ellipsoid. See text for explanation. 

(1) Plot ol, 02, 03 axes together with RI/n, the normal 
to the given plane, on a stereogram (Fig. 5). 

(2) Using Fig. 4 or equation (1), determine the angle 
V for the Cauchy ellipsoid and plot the two circular 
sections on the stereogram.They intersect along az and 
are inclined at an angle V from a~. 

(3) Find the plane passing through RI In and which has 
R//n as the bisector of the traces of the circular sections 
(Fig. 5). 

(4) The direction perpendicular to the plane found in 
(3) is the direction of shear stress (r) in the plane which 
has the normal R/In. 
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be found. These are given by the acute and obtuse 
bisectors of the angle in the section plane made by the 
two lines which are the intersections with each of the 
circular sections. To find the elliptical section which has 
R/In as a principal axis, we consider on the stereogram 
(Fig. 5) a variety of planes passing through RI/n, until 
the latter bisects the angle between the intersections 
with circular sections. In terms of Fig. 5, we find the 
plane for which a = a ' .  

When found, this plane corresponds to the plane 
containing R and O in Fig. 3 and is the plane which is 
perpendicular to the shear stress direction r in the plane 
being considered (Fig. 5). 

SUMMARY 

To find the direction of shear stress on a given plane, 
the following steps are followed. 
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